Nonresonance conditions for fourth order nonlinear boundary value problems
نویسندگان
چکیده
منابع مشابه
Some Nonlinear Fourth-Order Boundary Value Problems at Nonresonance
This work is devoted to study the existence and the regularity of solutions of two nonlinear problems of fourth order governed by p-biharmonic operators in nonresonance cases. In the first problem we establish the nonresonance part of the Fredholm alternative. In the second problem, nonresonance relative to the first eigenvalue is considered for p = 2 at the case where the nonresonance is betwe...
متن کاملExistence of positive solutions for fourth-order boundary value problems with three- point boundary conditions
In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...
متن کاملNON-POLYNOMIAL SPLINE SOLUTIONS FOR SPECIAL NONLINEAR FOURTH-ORDER BOUNDARY VALUE PROBLEMS
We present a sixth-order non-polynomial spline method for the solutions of two-point nonlinear boundary value problem u(4)+f(x,u)=0, u(a)=α1, u''(a)= α2, u(b)= β1,u''(b)= β2, in off step points. Numerical method of sixth-order with end conditions of the order 6 is derived. The convergence analysis of the method has been discussed. Numerical examples are presented to illustrate the applications ...
متن کاملTridiagonal Fourth Order Approximations to General Two-Point Nonlinear Boundary Value Problems with Mixed Boundary Conditions
This paper develops fourth order discretizations to the two-point boundary value problem y(2kt)=f(t,y(t),y(1\t)), ^o^0) "o^(1)(°) = 60' al ?W + "l^1^1) = 5 1These discretizations have the desirable properties that they are tridiagonal and of "positive type".
متن کاملPositive solutions of nonlinear fourth order boundary value problems with local and nonlocal boundary conditions
We establish new existence results for multiple positive solutions of fourth order nonlinear equations which model deflections of an elastic beam. We consider the widely studied boundary conditions corresponding to clamped and hinged ends and many nonlocal boundary conditions, with a unified approach. Our method is to show that each boundary value problem can be written as the same type of pert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 1994
ISSN: 0161-1712,1687-0425
DOI: 10.1155/s0161171294001031